### IWS Communication; Challenges & Security Risks for Water Utilities

Water Research Foundation, Project # 04670

Bob Daly, Principal Consultant, EMA Mary Smith, Project Manager, WRF



# Agenda

- 1. WRF Project #04670 Introduction
- 2. Utility Survey Findings
- 3. Considerations for IWS Communications and Security
- 4. Emerging Technologies
- 5. Conclusions

#### Water Research FOUNDATION - Advancing the Science of Water

Advancing the science of water to improve the quality of life

- Member-Supported, non-profit research collaborative
- Integration of WRF and WE&RF January 1<sup>st</sup>, 2018
- 1,200 subscribers water, wastewater, stormwater, and reuse
- 2,300 research studies, \$700M Value





Alexandria, VA

## Section 1

#### WRF Project #04670 Introduction



### WRF Research Track

- Area Focus Program Research Track was established in 2015 – Defining Attributes and Demonstrating Benefits of Intelligent Water Networks.
- Initial Project #04614 (published in 2017) surveyed the field and identified research projects for the track.
- This Project #04670 is one of the projects recommended by #04614.



Source: WRF Project # 04614

### Need for Project #04670

- Utilities use a wide range of information systems as part of IWS
- Information systems often evolved independently
- As a result, cybersecurity, performance, and integration challenges exist
- Project #04670 needed to:
  - Inventory types of systems and associated communication media and protocols
  - Provide guidance to help utilities select best communication and cybersecurity



6

### Project Approach

- Work with Utility Advisory Panel (UAP) from 8 utilities and WRF Project Advisory Committee (PAC) from 4 additional utilities
- Perform a utility survey to understand the current situation
- Explore emerging technologies
- Conduct workshop to review findings with UAP and PAC
- Create final report and tool to provide guidance



## Section 2

#### **Utility Survey Findings**

### Who Were the Survey Respondents?



Source: WRF Project # 04760

### Most Popular IWS Information Systems



Source: WRF Project # 04760

### Most Popular Means of Communications



Source: WRF Project # 04760

### **Distribution SCADA Protocols**



Source: WRF Project # 04760

### **Collection System SCADA Protocols**



Source: WRF Project # 04760

### Use of Security Technologies



Source: WRF Project # 04760

### Use of Security Technologies



### What Survey Revealed about Security

- Reduced participation in answering security questions
- Room for improvement
  - Approx. 66% have formal cybersecurity policies and procedures
  - Approx. 50% have had independent cybersecurity testing done in the past 2 years
  - Approx. 25% are using Security Information and Event Management systems

## Section 3

#### Considerations for IWS Communications and Security

### Introduction to Considerations Matrix Tool

- Concept developed during UAP/PAC workshop
- Excel sheet for each of the most popular information systems
- Each sheet shows, for the 5 most popular communication methodologies:
  - General considerations
  - > Cybersecurity considerations
  - General observations concerning capital and O&M Costs
  - > General and security considerations for the most popular protocols

# Introduction to Considerations Matrix Tool (Cont.)

- AMI/AMR sheet is focused on Field Area Networks (FANs)
- Security Video provides general and security considerations for protocol/codecs (communication/compression methods)

#### Considerations Matrix for Distribution SCADA

| INFORMATION SYSTEM               | COMMUNICATION<br>METHODOLOGY | GENERAL CONSIDERATIONS                                                                 | CYBER CONSIDERATIONS                                                                                                                                          |                |
|----------------------------------|------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| <b>Distribution SCADA System</b> | em                           |                                                                                        |                                                                                                                                                               |                |
|                                  |                              | •Reliable                                                                              | <ul> <li>Authentication/ Encryption over WAN</li> </ul>                                                                                                       | High.<br>fiber |
|                                  |                              | •Large bandwidth                                                                       | •Firewall capabilities                                                                                                                                        |                |
|                                  | Dedicated Fiber              | •May be shared with other information systems.                                         | •Have dedicated strands for each<br>communication system. Use virtual<br>network technology if physical<br>separation on separate strands is not<br>possible. |                |
|                                  |                              | •QOS and SLAs very important<br>to guarantee required<br>bandwidth if fiber is shared. | <ul> <li>Intrusion detection technology (critical sites)</li> </ul>                                                                                           |                |
|                                  |                              | •Life-cycle (don't control                                                             | •Authentication measures                                                                                                                                      | Low            |

### Considerations Matrix (Continued)

| >                      | E                                                     | F                                                                                                                       |             |
|------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------|
| RATIONS                | CAPITAL COST                                          | O&M COST                                                                                                                | PROTOC      |
| on over WAN            | High. Both the cost of the fiber and the installation | Low. There should be little<br>O&M cost after the initial                                                               | Modbus      |
| for each               | cost are high.                                        | installation and testing is<br>completed. However, utility<br>would be responsible for<br>repairs which might be costly | Ethernet/IP |
| sical<br>trands is not |                                                       | after storms.                                                                                                           | DNP3        |
|                        |                                                       |                                                                                                                         |             |
| and the second         | Low Coverar the rood                                  | Month Araes for                                                                                                         | Modbus      |

### Considerations Matrix (Continued)

| ost                                                                                            | PROTOCOLS   | PROTOCOL<br>CONSIDERATIONS                                                                                                                                                                                                                                                                                                                                                                                          | PROTOCOL SECURITY CONSIDERATIONS                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------------------------------------------------------------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| uld be little<br>the initial<br>testing is<br>wever, utility<br>risible for<br>hight be costly | Modbus      | <ul> <li>Number of data types is<br/>limited to those understood in<br/>the 1970s, Large binary<br/>objects are not supported.</li> <li>Master/Slave protocol. Does<br/>not support peer to peer.</li> <li>Time-Stamped data must be<br/>custom programmed, outside<br/>of protocol</li> <li>Modbus TCP would be used<br/>or serial encapsulated in<br/>TCP.</li> <li>Open Protocol, vendor<br/>neutral.</li> </ul> | Modbus protocols do not have authentication or<br>encryption included as part of the protocol itself.<br>Authentication and encryption should be added outside of<br>the protocol as a recommended cybersecurity practice.<br>Bandwidth with fiber is large enough to support additional<br>overhead for authentication and encryption measures.<br>Encapsulate the protocol within a secure transport<br>protocol like TLS |
|                                                                                                | Ethernet/IP | •Utilizes the Common                                                                                                                                                                                                                                                                                                                                                                                                | Segmentation and perimeter security. Use authentication                                                                                                                                                                                                                                                                                                                                                                     |

## Section 4

#### **Emerging Technologies**



### **Emerging Communication Technologies**

- Low Power Wide Area Networks (LPWANs)
  - Wide coverage to distributed devices using small packets at regular intervals, often battery powered

≻Examples:

- LoRa 900 MHz ISM, low downlink bandwidth challenge
- RPMA 2.5 GHz ISM, increased downlink bandwidth over LoRa
- LTE-CatM1 cellular LTE technology, use cellular providers
- NB-IoT cellular LTE technology, complementary to CatM1

• WiMAX

> Higher bandwidth, but higher power requirement

Licensed spectrum



### **Emerging Security Technologies**

#### Inventory Technologies

- Passive discovery tools
- Hybrid Tools working with ICS vendor applications detect changes
- Threat Detection
  - Network inspection
  - Use AI to flag abnormal communications
- Industrial firewalls
  - Understand industrial protocols
  - Provide higher level of filtering capability



## Section 5

#### Conclusions

### Conclusions

- Survey revealed the most popular IWS information systems, communications technologies and protocols
- There is room for security improvements
- Utilities should consider risks associated with use of older communications with older protocols
- The considerations matrix provides guidance when selecting communication methods and protocols
- Utilities have an increasing range of communications options as new technologies emerge



#### Intelligent Water Monitoring and Control

## Questions?

#### Bob Daly, EMA

#### Mary Smith, WRF

Bob: <u>bdaly@ema-inc.com</u>

Mary: <a href="mailto:msmith@waterrf.org">msmith@waterrf.org</a>

